MakeItFrom.com
Menu (ESC)

EN AC-71100 Aluminum vs. ACI-ASTM CA40F Steel

EN AC-71100 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CA40F steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-71100 aluminum and the bottom bar is ACI-ASTM CA40F steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
230
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.1
13
Fatigue Strength, MPa 150
320
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 260
770
Tensile Strength: Yield (Proof), MPa 230
550

Thermal Properties

Latent Heat of Fusion, J/g 490
280
Maximum Temperature: Mechanical, °C 170
750
Melting Completion (Liquidus), °C 580
1430
Melting Onset (Solidus), °C 520
1390
Specific Heat Capacity, J/kg-K 860
480
Thermal Expansion, µm/m-K 22
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 97
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.5
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 7.4
2.0
Embodied Energy, MJ/kg 140
28
Embodied Water, L/kg 1010
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.8
94
Resilience: Unit (Modulus of Resilience), kJ/m3 360
790
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 25
28
Strength to Weight: Bending, points 31
24
Thermal Shock Resistance, points 12
28

Alloy Composition

Aluminum (Al), % 78.7 to 83.3
0
Carbon (C), % 0
0.2 to 0.4
Chromium (Cr), % 0
11.5 to 14
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.3
81.6 to 88.3
Magnesium (Mg), % 0.2 to 0.5
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 7.5 to 9.5
0 to 1.5
Sulfur (S), % 0
0.2 to 0.4
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 9.0 to 10.5
0
Residuals, % 0 to 0.15
0