MakeItFrom.com
Menu (ESC)

EN AC-71100 Aluminum vs. EN 1.5024 Steel

EN AC-71100 aluminum belongs to the aluminum alloys classification, while EN 1.5024 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-71100 aluminum and the bottom bar is EN 1.5024 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
200 to 470
Elastic (Young's, Tensile) Modulus, GPa 72
190
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 260
670 to 1930

Thermal Properties

Latent Heat of Fusion, J/g 490
270
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 580
1440
Melting Onset (Solidus), °C 520
1400
Specific Heat Capacity, J/kg-K 860
480
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 97
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.9
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 7.4
1.4
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 1010
45

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 25
24 to 69
Strength to Weight: Bending, points 31
22 to 45
Thermal Shock Resistance, points 12
20 to 58

Alloy Composition

Aluminum (Al), % 78.7 to 83.3
0
Carbon (C), % 0
0.42 to 0.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.3
96.7 to 97.6
Magnesium (Mg), % 0.2 to 0.5
0
Manganese (Mn), % 0 to 0.15
0.5 to 0.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 7.5 to 9.5
1.5 to 2.0
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 9.0 to 10.5
0
Residuals, % 0 to 0.15
0