MakeItFrom.com
Menu (ESC)

EN AC-71100 Aluminum vs. SAE-AISI 8620 Steel

EN AC-71100 aluminum belongs to the aluminum alloys classification, while SAE-AISI 8620 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-71100 aluminum and the bottom bar is SAE-AISI 8620 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
150 to 210
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.1
13 to 31
Fatigue Strength, MPa 150
270 to 360
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 260
520 to 690
Tensile Strength: Yield (Proof), MPa 230
360 to 570

Thermal Properties

Latent Heat of Fusion, J/g 490
250
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 580
1460
Melting Onset (Solidus), °C 520
1420
Specific Heat Capacity, J/kg-K 860
470
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 97
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.6
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 7.4
1.5
Embodied Energy, MJ/kg 140
20
Embodied Water, L/kg 1010
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.8
86 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 360
340 to 880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 25
18 to 24
Strength to Weight: Bending, points 31
18 to 22
Thermal Shock Resistance, points 12
15 to 20

Alloy Composition

Aluminum (Al), % 78.7 to 83.3
0
Carbon (C), % 0
0.18 to 0.23
Chromium (Cr), % 0
0.4 to 0.6
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.3
96.9 to 98
Magnesium (Mg), % 0.2 to 0.5
0
Manganese (Mn), % 0 to 0.15
0.7 to 0.9
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 0
0.4 to 0.7
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 7.5 to 9.5
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 9.0 to 10.5
0
Residuals, % 0 to 0.15
0