MakeItFrom.com
Menu (ESC)

EN AC-71100 Aluminum vs. N06058 Nickel

EN AC-71100 aluminum belongs to the aluminum alloys classification, while N06058 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-71100 aluminum and the bottom bar is N06058 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
220
Elongation at Break, % 1.1
45
Fatigue Strength, MPa 150
350
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
86
Tensile Strength: Ultimate (UTS), MPa 260
860
Tensile Strength: Yield (Proof), MPa 230
410

Thermal Properties

Latent Heat of Fusion, J/g 490
330
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 580
1540
Melting Onset (Solidus), °C 520
1490
Specific Heat Capacity, J/kg-K 860
420
Thermal Expansion, µm/m-K 22
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.9
8.8
Embodied Carbon, kg CO2/kg material 7.4
13
Embodied Energy, MJ/kg 140
170
Embodied Water, L/kg 1010
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.8
320
Resilience: Unit (Modulus of Resilience), kJ/m3 360
370
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 25
27
Strength to Weight: Bending, points 31
23
Thermal Shock Resistance, points 12
23

Alloy Composition

Aluminum (Al), % 78.7 to 83.3
0 to 0.4
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 0 to 0.1
0 to 0.5
Iron (Fe), % 0 to 0.3
0 to 1.5
Magnesium (Mg), % 0.2 to 0.5
0
Manganese (Mn), % 0 to 0.15
0 to 0.5
Molybdenum (Mo), % 0
19 to 21
Nickel (Ni), % 0
52.2 to 61
Nitrogen (N), % 0
0.020 to 0.15
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 7.5 to 9.5
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
0 to 0.3
Zinc (Zn), % 9.0 to 10.5
0
Residuals, % 0 to 0.15
0