MakeItFrom.com
Menu (ESC)

CC140C Copper vs. 7010 Aluminum

CC140C copper belongs to the copper alloys classification, while 7010 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CC140C copper and the bottom bar is 7010 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
70
Elongation at Break, % 11
3.9 to 6.8
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 44
26
Tensile Strength: Ultimate (UTS), MPa 340
520 to 590
Tensile Strength: Yield (Proof), MPa 230
410 to 540

Thermal Properties

Latent Heat of Fusion, J/g 210
380
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1100
630
Melting Onset (Solidus), °C 1040
480
Specific Heat Capacity, J/kg-K 390
860
Thermal Conductivity, W/m-K 310
150
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 77
40
Electrical Conductivity: Equal Weight (Specific), % IACS 78
120

Otherwise Unclassified Properties

Base Metal Price, % relative 31
10
Density, g/cm3 8.9
3.0
Embodied Carbon, kg CO2/kg material 2.6
8.3
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 310
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
22 to 33
Resilience: Unit (Modulus of Resilience), kJ/m3 220
1230 to 2130
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
45
Strength to Weight: Axial, points 10
47 to 54
Strength to Weight: Bending, points 12
47 to 52
Thermal Diffusivity, mm2/s 89
58
Thermal Shock Resistance, points 12
22 to 26

Alloy Composition

Aluminum (Al), % 0
87.9 to 90.6
Chromium (Cr), % 0.4 to 1.2
0 to 0.050
Copper (Cu), % 98.8 to 99.6
1.5 to 2.0
Iron (Fe), % 0
0 to 0.15
Magnesium (Mg), % 0
2.1 to 2.6
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.12
Titanium (Ti), % 0
0 to 0.060
Zinc (Zn), % 0
5.7 to 6.7
Zirconium (Zr), % 0
0.1 to 0.16
Residuals, % 0
0 to 0.15