MakeItFrom.com
Menu (ESC)

CC140C Copper vs. A357.0 Aluminum

CC140C copper belongs to the copper alloys classification, while A357.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CC140C copper and the bottom bar is A357.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
100
Elastic (Young's, Tensile) Modulus, GPa 120
70
Elongation at Break, % 11
3.7
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
26
Tensile Strength: Ultimate (UTS), MPa 340
350
Tensile Strength: Yield (Proof), MPa 230
270

Thermal Properties

Latent Heat of Fusion, J/g 210
500
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1100
610
Melting Onset (Solidus), °C 1040
560
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 310
160
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 77
40
Electrical Conductivity: Equal Weight (Specific), % IACS 78
140

Otherwise Unclassified Properties

Base Metal Price, % relative 31
12
Density, g/cm3 8.9
2.6
Embodied Carbon, kg CO2/kg material 2.6
8.2
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 310
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
12
Resilience: Unit (Modulus of Resilience), kJ/m3 220
520
Stiffness to Weight: Axial, points 7.3
15
Stiffness to Weight: Bending, points 18
53
Strength to Weight: Axial, points 10
38
Strength to Weight: Bending, points 12
43
Thermal Diffusivity, mm2/s 89
68
Thermal Shock Resistance, points 12
17

Alloy Composition

Aluminum (Al), % 0
90.8 to 93
Beryllium (Be), % 0
0.040 to 0.070
Chromium (Cr), % 0.4 to 1.2
0
Copper (Cu), % 98.8 to 99.6
0 to 0.2
Iron (Fe), % 0
0 to 0.2
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 0
0 to 0.1
Silicon (Si), % 0
6.5 to 7.5
Titanium (Ti), % 0
0.040 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15