MakeItFrom.com
Menu (ESC)

CC140C Copper vs. ACI-ASTM CG6MMN Steel

CC140C copper belongs to the copper alloys classification, while ACI-ASTM CG6MMN steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is CC140C copper and the bottom bar is ACI-ASTM CG6MMN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
190
Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 11
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
79
Tensile Strength: Ultimate (UTS), MPa 340
670
Tensile Strength: Yield (Proof), MPa 230
320

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 200
1080
Melting Completion (Liquidus), °C 1100
1420
Melting Onset (Solidus), °C 1040
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Expansion, µm/m-K 17
17

Otherwise Unclassified Properties

Base Metal Price, % relative 31
22
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
4.8
Embodied Energy, MJ/kg 41
68
Embodied Water, L/kg 310
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
190
Resilience: Unit (Modulus of Resilience), kJ/m3 220
260
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10
24
Strength to Weight: Bending, points 12
22
Thermal Shock Resistance, points 12
14

Alloy Composition

Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0.4 to 1.2
20.5 to 23.5
Copper (Cu), % 98.8 to 99.6
0
Iron (Fe), % 0
51.9 to 62.1
Manganese (Mn), % 0
4.0 to 6.0
Molybdenum (Mo), % 0
1.5 to 3.0
Nickel (Ni), % 0
11.5 to 13.5
Niobium (Nb), % 0
0.1 to 0.3
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0
0.1 to 0.3