MakeItFrom.com
Menu (ESC)

CC140C Copper vs. AISI 204 Stainless Steel

CC140C copper belongs to the copper alloys classification, while AISI 204 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC140C copper and the bottom bar is AISI 204 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
210 to 330
Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 11
23 to 39
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Tensile Strength: Ultimate (UTS), MPa 340
730 to 1100
Tensile Strength: Yield (Proof), MPa 230
380 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
850
Melting Completion (Liquidus), °C 1100
1410
Melting Onset (Solidus), °C 1040
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 310
15
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 77
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 78
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 31
10
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.4
Embodied Energy, MJ/kg 41
35
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
240 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 220
360 to 2940
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10
27 to 40
Strength to Weight: Bending, points 12
24 to 31
Thermal Diffusivity, mm2/s 89
4.1
Thermal Shock Resistance, points 12
16 to 24

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.4 to 1.2
15 to 17
Copper (Cu), % 98.8 to 99.6
0
Iron (Fe), % 0
69.6 to 76.4
Manganese (Mn), % 0
7.0 to 9.0
Nickel (Ni), % 0
1.5 to 3.0
Nitrogen (N), % 0
0.15 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030