MakeItFrom.com
Menu (ESC)

CC140C Copper vs. AISI 304H Stainless Steel

CC140C copper belongs to the copper alloys classification, while AISI 304H stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is CC140C copper and the bottom bar is AISI 304H stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
180
Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 11
40
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Tensile Strength: Ultimate (UTS), MPa 340
580
Tensile Strength: Yield (Proof), MPa 230
230

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
960
Melting Completion (Liquidus), °C 1100
1430
Melting Onset (Solidus), °C 1040
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 310
17
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 77
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 78
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 31
15
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
3.0
Embodied Energy, MJ/kg 41
43
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
190
Resilience: Unit (Modulus of Resilience), kJ/m3 220
130
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10
21
Strength to Weight: Bending, points 12
20
Thermal Diffusivity, mm2/s 89
4.5
Thermal Shock Resistance, points 12
13

Alloy Composition

Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0.4 to 1.2
18 to 20
Copper (Cu), % 98.8 to 99.6
0
Iron (Fe), % 0
66.6 to 74
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
8.0 to 10.5
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030