MakeItFrom.com
Menu (ESC)

CC140C Copper vs. ASTM A369 Grade FP5

CC140C copper belongs to the copper alloys classification, while ASTM A369 grade FP5 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC140C copper and the bottom bar is ASTM A369 grade FP5.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
140
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 11
20
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
74
Tensile Strength: Ultimate (UTS), MPa 340
470
Tensile Strength: Yield (Proof), MPa 230
240

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Maximum Temperature: Mechanical, °C 200
510
Melting Completion (Liquidus), °C 1100
1460
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 310
40
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 77
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 78
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 31
4.3
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.7
Embodied Energy, MJ/kg 41
23
Embodied Water, L/kg 310
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
80
Resilience: Unit (Modulus of Resilience), kJ/m3 220
140
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10
17
Strength to Weight: Bending, points 12
17
Thermal Diffusivity, mm2/s 89
11
Thermal Shock Resistance, points 12
13

Alloy Composition

Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0.4 to 1.2
4.0 to 6.0
Copper (Cu), % 98.8 to 99.6
0
Iron (Fe), % 0
92.1 to 95.3
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.45 to 0.65
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.025