MakeItFrom.com
Menu (ESC)

CC140C Copper vs. ASTM Grade HC Steel

CC140C copper belongs to the copper alloys classification, while ASTM grade HC steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC140C copper and the bottom bar is ASTM grade HC steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 11
6.0
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 44
80
Tensile Strength: Ultimate (UTS), MPa 340
430
Tensile Strength: Yield (Proof), MPa 230
200

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1100
1410
Melting Onset (Solidus), °C 1040
1370
Specific Heat Capacity, J/kg-K 390
490
Thermal Conductivity, W/m-K 310
17
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 77
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 78
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
14
Density, g/cm3 8.9
7.6
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 41
40
Embodied Water, L/kg 310
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
21
Resilience: Unit (Modulus of Resilience), kJ/m3 220
95
Stiffness to Weight: Axial, points 7.3
15
Stiffness to Weight: Bending, points 18
26
Strength to Weight: Axial, points 10
16
Strength to Weight: Bending, points 12
16
Thermal Diffusivity, mm2/s 89
4.5
Thermal Shock Resistance, points 12
14

Alloy Composition

Carbon (C), % 0
0 to 0.5
Chromium (Cr), % 0.4 to 1.2
26 to 30
Copper (Cu), % 98.8 to 99.6
0
Iron (Fe), % 0
61.9 to 74
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 4.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 2.0
Sulfur (S), % 0
0 to 0.040