MakeItFrom.com
Menu (ESC)

CC140C Copper vs. EN 1.4655 Stainless Steel

CC140C copper belongs to the copper alloys classification, while EN 1.4655 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC140C copper and the bottom bar is EN 1.4655 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 11
23 to 25
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 44
78
Tensile Strength: Ultimate (UTS), MPa 340
720 to 730
Tensile Strength: Yield (Proof), MPa 230
450 to 480

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
1050
Melting Completion (Liquidus), °C 1100
1420
Melting Onset (Solidus), °C 1040
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 310
15
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 77
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 78
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
15
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.9
Embodied Energy, MJ/kg 41
41
Embodied Water, L/kg 310
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
150 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 220
510 to 580
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10
26
Strength to Weight: Bending, points 12
23
Thermal Diffusivity, mm2/s 89
4.0
Thermal Shock Resistance, points 12
20

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.4 to 1.2
22 to 24
Copper (Cu), % 98.8 to 99.6
1.0 to 3.0
Iron (Fe), % 0
63.6 to 73.4
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0.1 to 0.6
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015