MakeItFrom.com
Menu (ESC)

CC140C Copper vs. EN 1.5113 Steel

CC140C copper belongs to the copper alloys classification, while EN 1.5113 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC140C copper and the bottom bar is EN 1.5113 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
170 to 270
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 11
11 to 18
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
72
Tensile Strength: Ultimate (UTS), MPa 340
580 to 900
Tensile Strength: Yield (Proof), MPa 230
320 to 770

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1100
1450
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 310
52
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 77
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 78
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
2.0
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 41
19
Embodied Water, L/kg 310
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
91 to 96
Resilience: Unit (Modulus of Resilience), kJ/m3 220
270 to 1570
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 10
21 to 32
Strength to Weight: Bending, points 12
20 to 27
Thermal Diffusivity, mm2/s 89
14
Thermal Shock Resistance, points 12
17 to 26

Alloy Composition

Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0.4 to 1.2
0
Copper (Cu), % 98.8 to 99.6
0
Iron (Fe), % 0
97 to 97.5
Manganese (Mn), % 0
1.6 to 1.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.9 to 1.1
Sulfur (S), % 0
0 to 0.025