MakeItFrom.com
Menu (ESC)

CC140C Copper vs. Grade 36 Titanium

CC140C copper belongs to the copper alloys classification, while grade 36 titanium belongs to the titanium alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is CC140C copper and the bottom bar is grade 36 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 11
11
Poisson's Ratio 0.34
0.36
Shear Modulus, GPa 44
39
Tensile Strength: Ultimate (UTS), MPa 340
530
Tensile Strength: Yield (Proof), MPa 230
520

Thermal Properties

Latent Heat of Fusion, J/g 210
370
Maximum Temperature: Mechanical, °C 200
320
Melting Completion (Liquidus), °C 1100
2020
Melting Onset (Solidus), °C 1040
1950
Specific Heat Capacity, J/kg-K 390
420
Thermal Expansion, µm/m-K 17
8.1

Otherwise Unclassified Properties

Density, g/cm3 8.9
6.3
Embodied Carbon, kg CO2/kg material 2.6
58
Embodied Energy, MJ/kg 41
920
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
59
Resilience: Unit (Modulus of Resilience), kJ/m3 220
1260
Stiffness to Weight: Axial, points 7.3
9.3
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10
23
Strength to Weight: Bending, points 12
23
Thermal Shock Resistance, points 12
45

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.4 to 1.2
0
Copper (Cu), % 98.8 to 99.6
0
Hydrogen (H), % 0
0 to 0.0035
Iron (Fe), % 0
0 to 0.030
Niobium (Nb), % 0
42 to 47
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.16
Titanium (Ti), % 0
52.3 to 58
Residuals, % 0
0 to 0.4