MakeItFrom.com
Menu (ESC)

CC140C Copper vs. SAE-AISI 1065 Steel

CC140C copper belongs to the copper alloys classification, while SAE-AISI 1065 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC140C copper and the bottom bar is SAE-AISI 1065 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
210 to 230
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 11
11 to 14
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
72
Tensile Strength: Ultimate (UTS), MPa 340
710 to 780
Tensile Strength: Yield (Proof), MPa 230
430 to 550

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1100
1460
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 310
51
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 77
11
Electrical Conductivity: Equal Weight (Specific), % IACS 78
12

Otherwise Unclassified Properties

Base Metal Price, % relative 31
1.8
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 41
19
Embodied Water, L/kg 310
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
74 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 220
490 to 820
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 10
25 to 28
Strength to Weight: Bending, points 12
23 to 24
Thermal Diffusivity, mm2/s 89
14
Thermal Shock Resistance, points 12
25 to 27

Alloy Composition

Carbon (C), % 0
0.6 to 0.7
Chromium (Cr), % 0.4 to 1.2
0
Copper (Cu), % 98.8 to 99.6
0
Iron (Fe), % 0
98.3 to 98.8
Manganese (Mn), % 0
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050