MakeItFrom.com
Menu (ESC)

CC140C Copper vs. C38000 Brass

Both CC140C copper and C38000 brass are copper alloys. They have 58% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC140C copper and the bottom bar is C38000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 11
17
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 44
39
Tensile Strength: Ultimate (UTS), MPa 340
380
Tensile Strength: Yield (Proof), MPa 230
120

Thermal Properties

Latent Heat of Fusion, J/g 210
170
Maximum Temperature: Mechanical, °C 200
110
Melting Completion (Liquidus), °C 1100
800
Melting Onset (Solidus), °C 1040
760
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 310
110
Thermal Expansion, µm/m-K 17
21

Otherwise Unclassified Properties

Base Metal Price, % relative 31
22
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 41
46
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
50
Resilience: Unit (Modulus of Resilience), kJ/m3 220
74
Stiffness to Weight: Axial, points 7.3
7.1
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 10
13
Strength to Weight: Bending, points 12
14
Thermal Diffusivity, mm2/s 89
37
Thermal Shock Resistance, points 12
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Chromium (Cr), % 0.4 to 1.2
0
Copper (Cu), % 98.8 to 99.6
55 to 60
Iron (Fe), % 0
0 to 0.35
Lead (Pb), % 0
1.5 to 2.5
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
35.9 to 43.5
Residuals, % 0
0 to 0.5