MakeItFrom.com
Menu (ESC)

CC140C Copper vs. C48200 Brass

Both CC140C copper and C48200 brass are copper alloys. They have 61% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC140C copper and the bottom bar is C48200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 11
15 to 40
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 44
40
Tensile Strength: Ultimate (UTS), MPa 340
400 to 500
Tensile Strength: Yield (Proof), MPa 230
160 to 320

Thermal Properties

Latent Heat of Fusion, J/g 210
170
Maximum Temperature: Mechanical, °C 200
120
Melting Completion (Liquidus), °C 1100
900
Melting Onset (Solidus), °C 1040
890
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 310
120
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 77
26
Electrical Conductivity: Equal Weight (Specific), % IACS 78
29

Otherwise Unclassified Properties

Base Metal Price, % relative 31
23
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 41
47
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
61 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 220
120 to 500
Stiffness to Weight: Axial, points 7.3
7.2
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 10
14 to 17
Strength to Weight: Bending, points 12
15 to 17
Thermal Diffusivity, mm2/s 89
38
Thermal Shock Resistance, points 12
13 to 16

Alloy Composition

Chromium (Cr), % 0.4 to 1.2
0
Copper (Cu), % 98.8 to 99.6
59 to 62
Iron (Fe), % 0
0 to 0.1
Lead (Pb), % 0
0.4 to 1.0
Tin (Sn), % 0
0.5 to 1.0
Zinc (Zn), % 0
35.5 to 40.1
Residuals, % 0
0 to 0.4