MakeItFrom.com
Menu (ESC)

CC140C Copper vs. C70620 Copper-nickel

Both CC140C copper and C70620 copper-nickel are copper alloys. They have 88% of their average alloy composition in common. There are 22 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is CC140C copper and the bottom bar is C70620 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
46
Tensile Strength: Ultimate (UTS), MPa 340
300 to 570

Thermal Properties

Latent Heat of Fusion, J/g 210
220
Maximum Temperature: Mechanical, °C 200
220
Melting Completion (Liquidus), °C 1100
1120
Melting Onset (Solidus), °C 1040
1060
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 310
49
Thermal Expansion, µm/m-K 17
17

Otherwise Unclassified Properties

Base Metal Price, % relative 31
33
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 41
51
Embodied Water, L/kg 310
300

Common Calculations

Stiffness to Weight: Axial, points 7.3
7.7
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 10
9.3 to 18
Strength to Weight: Bending, points 12
11 to 17
Thermal Diffusivity, mm2/s 89
14
Thermal Shock Resistance, points 12
10 to 20

Alloy Composition

Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0.4 to 1.2
0
Copper (Cu), % 98.8 to 99.6
86.5 to 90
Iron (Fe), % 0
1.0 to 1.8
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
9.0 to 11
Phosphorus (P), % 0
0 to 0.2
Sulfur (S), % 0
0 to 0.020
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5