MakeItFrom.com
Menu (ESC)

CC140C Copper vs. C87900 Brass

Both CC140C copper and C87900 brass are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 66% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC140C copper and the bottom bar is C87900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 11
25
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 44
41
Tensile Strength: Ultimate (UTS), MPa 340
480
Tensile Strength: Yield (Proof), MPa 230
240

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
130
Melting Completion (Liquidus), °C 1100
930
Melting Onset (Solidus), °C 1040
900
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 310
120
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 77
15
Electrical Conductivity: Equal Weight (Specific), % IACS 78
17

Otherwise Unclassified Properties

Base Metal Price, % relative 31
24
Density, g/cm3 8.9
8.1
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 41
46
Embodied Water, L/kg 310
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
100
Resilience: Unit (Modulus of Resilience), kJ/m3 220
270
Stiffness to Weight: Axial, points 7.3
7.3
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 10
17
Strength to Weight: Bending, points 12
17
Thermal Diffusivity, mm2/s 89
37
Thermal Shock Resistance, points 12
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Chromium (Cr), % 0.4 to 1.2
0
Copper (Cu), % 98.8 to 99.6
63 to 69.2
Iron (Fe), % 0
0 to 0.4
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0.8 to 1.2
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
30 to 36