MakeItFrom.com
Menu (ESC)

CC140C Copper vs. C94800 Bronze

Both CC140C copper and C94800 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 87% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is CC140C copper and the bottom bar is C94800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 11
22
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
43
Tensile Strength: Ultimate (UTS), MPa 340
310
Tensile Strength: Yield (Proof), MPa 230
160

Thermal Properties

Latent Heat of Fusion, J/g 210
200
Maximum Temperature: Mechanical, °C 200
190
Melting Completion (Liquidus), °C 1100
1030
Melting Onset (Solidus), °C 1040
900
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 310
39
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 77
12
Electrical Conductivity: Equal Weight (Specific), % IACS 78
12

Otherwise Unclassified Properties

Base Metal Price, % relative 31
34
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 2.6
3.5
Embodied Energy, MJ/kg 41
56
Embodied Water, L/kg 310
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
58
Resilience: Unit (Modulus of Resilience), kJ/m3 220
110
Stiffness to Weight: Axial, points 7.3
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 10
9.8
Strength to Weight: Bending, points 12
12
Thermal Diffusivity, mm2/s 89
12
Thermal Shock Resistance, points 12
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.15
Chromium (Cr), % 0.4 to 1.2
0
Copper (Cu), % 98.8 to 99.6
84 to 89
Iron (Fe), % 0
0 to 0.25
Lead (Pb), % 0
0.3 to 1.0
Manganese (Mn), % 0
0 to 0.2
Nickel (Ni), % 0
4.5 to 6.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
4.5 to 6.0
Zinc (Zn), % 0
1.0 to 2.5
Residuals, % 0
0 to 1.3