MakeItFrom.com
Menu (ESC)

CC140C Copper vs. N06110 Nickel

CC140C copper belongs to the copper alloys classification, while N06110 nickel belongs to the nickel alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is CC140C copper and the bottom bar is N06110 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 11
53
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
84
Tensile Strength: Ultimate (UTS), MPa 340
730
Tensile Strength: Yield (Proof), MPa 230
330

Thermal Properties

Latent Heat of Fusion, J/g 210
340
Maximum Temperature: Mechanical, °C 200
1020
Melting Completion (Liquidus), °C 1100
1490
Melting Onset (Solidus), °C 1040
1440
Specific Heat Capacity, J/kg-K 390
440
Thermal Expansion, µm/m-K 17
12

Otherwise Unclassified Properties

Base Metal Price, % relative 31
65
Density, g/cm3 8.9
8.6
Embodied Carbon, kg CO2/kg material 2.6
11
Embodied Energy, MJ/kg 41
160
Embodied Water, L/kg 310
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
320
Resilience: Unit (Modulus of Resilience), kJ/m3 220
260
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 10
23
Strength to Weight: Bending, points 12
21
Thermal Shock Resistance, points 12
20

Alloy Composition

Aluminum (Al), % 0
0 to 1.0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0.4 to 1.2
28 to 33
Copper (Cu), % 98.8 to 99.6
0 to 0.5
Iron (Fe), % 0
0 to 1.0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
9.0 to 12
Nickel (Ni), % 0
51 to 62
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.5
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 1.0
Tungsten (W), % 0
1.0 to 4.0