MakeItFrom.com
Menu (ESC)

CC140C Copper vs. S17600 Stainless Steel

CC140C copper belongs to the copper alloys classification, while S17600 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is CC140C copper and the bottom bar is S17600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
270 to 410
Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 11
8.6 to 11
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Tensile Strength: Ultimate (UTS), MPa 340
940 to 1490
Tensile Strength: Yield (Proof), MPa 230
580 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
890
Melting Completion (Liquidus), °C 1100
1430
Melting Onset (Solidus), °C 1040
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 310
15
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 77
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 78
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 31
13
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.9
Embodied Energy, MJ/kg 41
42
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
70 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 220
850 to 4390
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10
34 to 54
Strength to Weight: Bending, points 12
28 to 37
Thermal Diffusivity, mm2/s 89
4.1
Thermal Shock Resistance, points 12
31 to 50

Alloy Composition

Aluminum (Al), % 0
0 to 0.4
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.4 to 1.2
16 to 17.5
Copper (Cu), % 98.8 to 99.6
0
Iron (Fe), % 0
71.3 to 77.6
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
6.0 to 7.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.4 to 1.2