MakeItFrom.com
Menu (ESC)

CC140C Copper vs. S43037 Stainless Steel

CC140C copper belongs to the copper alloys classification, while S43037 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC140C copper and the bottom bar is S43037 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
160
Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 11
25
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Tensile Strength: Ultimate (UTS), MPa 340
410
Tensile Strength: Yield (Proof), MPa 230
230

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
880
Melting Completion (Liquidus), °C 1100
1440
Melting Onset (Solidus), °C 1040
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 310
25
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 77
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 78
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.0
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.3
Embodied Energy, MJ/kg 41
32
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
88
Resilience: Unit (Modulus of Resilience), kJ/m3 220
130
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10
15
Strength to Weight: Bending, points 12
16
Thermal Diffusivity, mm2/s 89
6.7
Thermal Shock Resistance, points 12
14

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.4 to 1.2
16 to 19
Copper (Cu), % 98.8 to 99.6
0
Iron (Fe), % 0
77.9 to 83.9
Manganese (Mn), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.1 to 1.0