MakeItFrom.com
Menu (ESC)

CC140C Copper vs. S44537 Stainless Steel

CC140C copper belongs to the copper alloys classification, while S44537 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC140C copper and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
180
Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 11
21
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 44
79
Tensile Strength: Ultimate (UTS), MPa 340
510
Tensile Strength: Yield (Proof), MPa 230
360

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
1000
Melting Completion (Liquidus), °C 1100
1480
Melting Onset (Solidus), °C 1040
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 310
21
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 77
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 78
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
19
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 41
50
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
95
Resilience: Unit (Modulus of Resilience), kJ/m3 220
320
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10
18
Strength to Weight: Bending, points 12
18
Thermal Diffusivity, mm2/s 89
5.6
Thermal Shock Resistance, points 12
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.4 to 1.2
20 to 24
Copper (Cu), % 98.8 to 99.6
0 to 0.5
Iron (Fe), % 0
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0
0 to 0.8
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0.1 to 0.6
Sulfur (S), % 0
0 to 0.0060
Titanium (Ti), % 0
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0