MakeItFrom.com
Menu (ESC)

CC212E Bronze vs. AISI 410Cb Stainless Steel

CC212E bronze belongs to the copper alloys classification, while AISI 410Cb stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is CC212E bronze and the bottom bar is AISI 410Cb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
200 to 270
Elastic (Young's, Tensile) Modulus, GPa 130
190
Elongation at Break, % 20
15
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 47
76
Tensile Strength: Ultimate (UTS), MPa 710
550 to 960
Tensile Strength: Yield (Proof), MPa 310
310 to 790

Thermal Properties

Latent Heat of Fusion, J/g 230
270
Maximum Temperature: Mechanical, °C 220
730
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1020
1400
Specific Heat Capacity, J/kg-K 440
480
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 27
7.5
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 3.4
2.0
Embodied Energy, MJ/kg 55
29
Embodied Water, L/kg 370
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
70 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 390
240 to 1600
Stiffness to Weight: Axial, points 8.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 24
20 to 35
Strength to Weight: Bending, points 21
19 to 28
Thermal Shock Resistance, points 22
20 to 35

Alloy Composition

Aluminum (Al), % 7.0 to 9.0
0
Carbon (C), % 0
0 to 0.18
Chromium (Cr), % 0
11 to 13
Copper (Cu), % 68 to 77
0
Iron (Fe), % 2.0 to 4.0
84.5 to 89
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 8.0 to 15
0 to 1.0
Nickel (Ni), % 1.5 to 4.5
0
Niobium (Nb), % 0
0.050 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 0 to 1.0
0