MakeItFrom.com
Menu (ESC)

CC330G Bronze vs. AWS E330

CC330G bronze belongs to the copper alloys classification, while AWS E330 belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is CC330G bronze and the bottom bar is AWS E330.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 20
29
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 530
580

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Melting Completion (Liquidus), °C 1050
1400
Melting Onset (Solidus), °C 1000
1350
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 62
12
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 15
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
31
Density, g/cm3 8.4
8.1
Embodied Carbon, kg CO2/kg material 3.2
5.4
Embodied Energy, MJ/kg 52
75
Embodied Water, L/kg 390
180

Common Calculations

Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18
20
Strength to Weight: Bending, points 17
19
Thermal Diffusivity, mm2/s 17
3.2
Thermal Shock Resistance, points 19
16

Alloy Composition

Aluminum (Al), % 8.0 to 10.5
0
Carbon (C), % 0
0.18 to 0.25
Chromium (Cr), % 0
14 to 17
Copper (Cu), % 87 to 92
0 to 0.75
Iron (Fe), % 0 to 1.2
40.7 to 51.8
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0 to 0.5
1.0 to 2.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0 to 1.0
33 to 37
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 0 to 0.5
0