MakeItFrom.com
Menu (ESC)

CC330G Bronze vs. EN 1.4841 Stainless Steel

CC330G bronze belongs to the copper alloys classification, while EN 1.4841 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC330G bronze and the bottom bar is EN 1.4841 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
190
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 20
32
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
78
Tensile Strength: Ultimate (UTS), MPa 530
650
Tensile Strength: Yield (Proof), MPa 190
260

Thermal Properties

Latent Heat of Fusion, J/g 230
330
Maximum Temperature: Mechanical, °C 220
1150
Melting Completion (Liquidus), °C 1050
1380
Melting Onset (Solidus), °C 1000
1340
Specific Heat Capacity, J/kg-K 430
490
Thermal Conductivity, W/m-K 62
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 15
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 29
25
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 3.2
4.3
Embodied Energy, MJ/kg 52
62
Embodied Water, L/kg 390
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
170
Resilience: Unit (Modulus of Resilience), kJ/m3 170
170
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18
23
Strength to Weight: Bending, points 17
21
Thermal Diffusivity, mm2/s 17
4.0
Thermal Shock Resistance, points 19
15

Alloy Composition

Aluminum (Al), % 8.0 to 10.5
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 87 to 92
0
Iron (Fe), % 0 to 1.2
47.1 to 55.5
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Nickel (Ni), % 0 to 1.0
19 to 22
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.2
1.5 to 2.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 0 to 0.5
0