MakeItFrom.com
Menu (ESC)

CC330G Bronze vs. EN 1.5501 Steel

CC330G bronze belongs to the copper alloys classification, while EN 1.5501 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC330G bronze and the bottom bar is EN 1.5501 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
120 to 150
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 20
12 to 17
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 530
390 to 510
Tensile Strength: Yield (Proof), MPa 190
260 to 420

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 220
400
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 1000
1420
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 62
52
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 15
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 29
1.8
Density, g/cm3 8.4
7.9
Embodied Carbon, kg CO2/kg material 3.2
1.4
Embodied Energy, MJ/kg 52
18
Embodied Water, L/kg 390
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
40 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 170
190 to 460
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18
14 to 18
Strength to Weight: Bending, points 17
15 to 18
Thermal Diffusivity, mm2/s 17
14
Thermal Shock Resistance, points 19
11 to 15

Alloy Composition

Aluminum (Al), % 8.0 to 10.5
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.13 to 0.16
Copper (Cu), % 87 to 92
0 to 0.25
Iron (Fe), % 0 to 1.2
98.4 to 99.269
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0 to 0.5
0.6 to 0.8
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.2
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 0 to 0.5
0