MakeItFrom.com
Menu (ESC)

CC330G Bronze vs. Type 3 Niobium

CC330G bronze belongs to the copper alloys classification, while Type 3 niobium belongs to the otherwise unclassified metals. There are 21 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is CC330G bronze and the bottom bar is Type 3 niobium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
110
Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 20
23
Poisson's Ratio 0.34
0.4
Shear Modulus, GPa 42
38
Tensile Strength: Ultimate (UTS), MPa 530
220
Tensile Strength: Yield (Proof), MPa 190
140

Thermal Properties

Latent Heat of Fusion, J/g 230
310
Specific Heat Capacity, J/kg-K 430
270
Thermal Conductivity, W/m-K 62
42
Thermal Expansion, µm/m-K 18
7.3

Otherwise Unclassified Properties

Density, g/cm3 8.4
8.6
Embodied Water, L/kg 390
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
44
Resilience: Unit (Modulus of Resilience), kJ/m3 170
93
Stiffness to Weight: Axial, points 7.5
6.8
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 18
7.2
Strength to Weight: Bending, points 17
9.5
Thermal Diffusivity, mm2/s 17
18
Thermal Shock Resistance, points 19
21

Alloy Composition

Aluminum (Al), % 8.0 to 10.5
0
Carbon (C), % 0
0 to 0.010
Copper (Cu), % 87 to 92
0
Hafnium (Hf), % 0
0 to 0.020
Hydrogen (H), % 0
0 to 0.0015
Iron (Fe), % 0 to 1.2
0 to 0.0050
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 0
0 to 0.010
Nickel (Ni), % 0 to 1.0
0 to 0.0050
Niobium (Nb), % 0
98.6 to 99.2
Nitrogen (N), % 0
0 to 0.010
Oxygen (O), % 0
0 to 0.015
Silicon (Si), % 0 to 0.2
0 to 0.0050
Tantalum (Ta), % 0
0 to 0.1
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0
0 to 0.020
Tungsten (W), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.5
0
Zirconium (Zr), % 0
0.8 to 1.2