MakeItFrom.com
Menu (ESC)

CC330G Bronze vs. C19200 Copper

Both CC330G bronze and C19200 copper are copper alloys. They have a moderately high 90% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC330G bronze and the bottom bar is C19200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 20
2.0 to 35
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 42
44
Tensile Strength: Ultimate (UTS), MPa 530
280 to 530
Tensile Strength: Yield (Proof), MPa 190
98 to 510

Thermal Properties

Latent Heat of Fusion, J/g 230
210
Maximum Temperature: Mechanical, °C 220
200
Melting Completion (Liquidus), °C 1050
1080
Melting Onset (Solidus), °C 1000
1080
Specific Heat Capacity, J/kg-K 430
390
Thermal Conductivity, W/m-K 62
240
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
58 to 74
Electrical Conductivity: Equal Weight (Specific), % IACS 15
58 to 75

Otherwise Unclassified Properties

Base Metal Price, % relative 29
30
Density, g/cm3 8.4
8.9
Embodied Carbon, kg CO2/kg material 3.2
2.6
Embodied Energy, MJ/kg 52
41
Embodied Water, L/kg 390
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
10 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 170
42 to 1120
Stiffness to Weight: Axial, points 7.5
7.2
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 18
8.8 to 17
Strength to Weight: Bending, points 17
11 to 16
Thermal Diffusivity, mm2/s 17
69
Thermal Shock Resistance, points 19
10 to 19

Alloy Composition

Aluminum (Al), % 8.0 to 10.5
0
Copper (Cu), % 87 to 92
98.5 to 99.19
Iron (Fe), % 0 to 1.2
0.8 to 1.2
Lead (Pb), % 0 to 0.3
0 to 0.030
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0
0.010 to 0.040
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 0 to 0.5
0 to 0.2
Residuals, % 0
0 to 0.2