MakeItFrom.com
Menu (ESC)

CC330G Bronze vs. S64512 Stainless Steel

CC330G bronze belongs to the copper alloys classification, while S64512 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is CC330G bronze and the bottom bar is S64512 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
330
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 20
17
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 530
1140
Tensile Strength: Yield (Proof), MPa 190
890

Thermal Properties

Latent Heat of Fusion, J/g 230
270
Maximum Temperature: Mechanical, °C 220
750
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 1000
1420
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 62
28
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 15
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 29
10
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 3.2
3.3
Embodied Energy, MJ/kg 52
47
Embodied Water, L/kg 390
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
180
Resilience: Unit (Modulus of Resilience), kJ/m3 170
2020
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18
40
Strength to Weight: Bending, points 17
31
Thermal Diffusivity, mm2/s 17
7.5
Thermal Shock Resistance, points 19
42

Alloy Composition

Aluminum (Al), % 8.0 to 10.5
0
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 87 to 92
0
Iron (Fe), % 0 to 1.2
80.6 to 84.7
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0 to 0.5
0.5 to 0.9
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0 to 1.0
2.0 to 3.0
Nitrogen (N), % 0
0.010 to 0.050
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.2
0 to 0.35
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.3
0
Vanadium (V), % 0
0.25 to 0.4
Zinc (Zn), % 0 to 0.5
0