MakeItFrom.com
Menu (ESC)

CC331G Bronze vs. 332.0 Aluminum

CC331G bronze belongs to the copper alloys classification, while 332.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CC331G bronze and the bottom bar is 332.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
110
Elastic (Young's, Tensile) Modulus, GPa 110
73
Elongation at Break, % 20
1.0
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
27
Tensile Strength: Ultimate (UTS), MPa 620
250
Tensile Strength: Yield (Proof), MPa 240
190

Thermal Properties

Latent Heat of Fusion, J/g 230
530
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 1060
580
Melting Onset (Solidus), °C 1000
530
Specific Heat Capacity, J/kg-K 440
880
Thermal Conductivity, W/m-K 61
100
Thermal Expansion, µm/m-K 18
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
26
Electrical Conductivity: Equal Weight (Specific), % IACS 14
84

Otherwise Unclassified Properties

Base Metal Price, % relative 28
10
Density, g/cm3 8.3
2.8
Embodied Carbon, kg CO2/kg material 3.2
7.8
Embodied Energy, MJ/kg 53
140
Embodied Water, L/kg 390
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 97
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 250
250
Stiffness to Weight: Axial, points 7.6
15
Stiffness to Weight: Bending, points 19
50
Strength to Weight: Axial, points 21
24
Strength to Weight: Bending, points 19
31
Thermal Diffusivity, mm2/s 17
42
Thermal Shock Resistance, points 22
12

Alloy Composition

Aluminum (Al), % 8.5 to 10.5
80.1 to 89
Copper (Cu), % 83 to 86.5
2.0 to 4.0
Iron (Fe), % 1.5 to 3.5
0 to 1.2
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0 to 0.050
0.5 to 1.5
Manganese (Mn), % 0 to 1.0
0 to 0.5
Nickel (Ni), % 0 to 1.5
0 to 0.5
Silicon (Si), % 0 to 0.2
8.5 to 10.5
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.5
0 to 1.0
Residuals, % 0
0 to 0.5