MakeItFrom.com
Menu (ESC)

CC331G Bronze vs. ASTM Grade LCA Steel

CC331G bronze belongs to the copper alloys classification, while ASTM grade LCA steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC331G bronze and the bottom bar is ASTM grade LCA steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 20
27
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
72
Tensile Strength: Ultimate (UTS), MPa 620
500
Tensile Strength: Yield (Proof), MPa 240
230

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 220
400
Melting Completion (Liquidus), °C 1060
1460
Melting Onset (Solidus), °C 1000
1410
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 61
49
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 14
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 28
1.9
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.2
1.4
Embodied Energy, MJ/kg 53
19
Embodied Water, L/kg 390
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 97
110
Resilience: Unit (Modulus of Resilience), kJ/m3 250
150
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 21
18
Strength to Weight: Bending, points 19
18
Thermal Diffusivity, mm2/s 17
14
Thermal Shock Resistance, points 22
16

Alloy Composition

Aluminum (Al), % 8.5 to 10.5
0
Carbon (C), % 0
0 to 0.25
Copper (Cu), % 83 to 86.5
0 to 0.3
Iron (Fe), % 1.5 to 3.5
96.9 to 100
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 1.0
0 to 0.7
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0 to 1.5
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 0.6
Sulfur (S), % 0
0 to 0.045
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 1.0