MakeItFrom.com
Menu (ESC)

CC331G Bronze vs. EN 1.0225 Steel

CC331G bronze belongs to the copper alloys classification, while EN 1.0225 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC331G bronze and the bottom bar is EN 1.0225 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
130 to 140
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 20
6.7 to 24
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Tensile Strength: Ultimate (UTS), MPa 620
440 to 500
Tensile Strength: Yield (Proof), MPa 240
230 to 380

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 220
400
Melting Completion (Liquidus), °C 1060
1460
Melting Onset (Solidus), °C 1000
1420
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 61
52
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 14
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 28
1.8
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.2
1.4
Embodied Energy, MJ/kg 53
18
Embodied Water, L/kg 390
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 97
31 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 250
140 to 390
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 21
16 to 18
Strength to Weight: Bending, points 19
16 to 18
Thermal Diffusivity, mm2/s 17
14
Thermal Shock Resistance, points 22
14 to 16

Alloy Composition

Aluminum (Al), % 8.5 to 10.5
0
Carbon (C), % 0
0 to 0.21
Copper (Cu), % 83 to 86.5
0
Iron (Fe), % 1.5 to 3.5
98 to 100
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 1.0
0 to 1.4
Nickel (Ni), % 0 to 1.5
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.2
0 to 0.35
Sulfur (S), % 0
0 to 0.045
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0