MakeItFrom.com
Menu (ESC)

CC331G Bronze vs. EN 1.4558 Stainless Steel

CC331G bronze belongs to the copper alloys classification, while EN 1.4558 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC331G bronze and the bottom bar is EN 1.4558 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 20
39
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Tensile Strength: Ultimate (UTS), MPa 620
510
Tensile Strength: Yield (Proof), MPa 240
200

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 1060
1400
Melting Onset (Solidus), °C 1000
1350
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 61
12
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 14
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 28
31
Density, g/cm3 8.3
8.0
Embodied Carbon, kg CO2/kg material 3.2
5.5
Embodied Energy, MJ/kg 53
77
Embodied Water, L/kg 390
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 97
160
Resilience: Unit (Modulus of Resilience), kJ/m3 250
100
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 21
18
Strength to Weight: Bending, points 19
18
Thermal Diffusivity, mm2/s 17
3.1
Thermal Shock Resistance, points 22
12

Alloy Composition

Aluminum (Al), % 8.5 to 10.5
0.15 to 0.45
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 83 to 86.5
0
Iron (Fe), % 1.5 to 3.5
39.2 to 47.9
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 0 to 1.5
32 to 35
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.2
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
0 to 0.6
Zinc (Zn), % 0 to 0.5
0