MakeItFrom.com
Menu (ESC)

CC331G Bronze vs. SAE-AISI 1015 Steel

CC331G bronze belongs to the copper alloys classification, while SAE-AISI 1015 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC331G bronze and the bottom bar is SAE-AISI 1015 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
120
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 20
20 to 32
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Tensile Strength: Ultimate (UTS), MPa 620
390 to 440
Tensile Strength: Yield (Proof), MPa 240
210 to 370

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 220
400
Melting Completion (Liquidus), °C 1060
1470
Melting Onset (Solidus), °C 1000
1420
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 61
52
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 14
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 28
1.8
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 3.2
1.4
Embodied Energy, MJ/kg 53
18
Embodied Water, L/kg 390
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 97
83 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 250
120 to 360
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 21
14 to 15
Strength to Weight: Bending, points 19
15 to 16
Thermal Diffusivity, mm2/s 17
14
Thermal Shock Resistance, points 22
12 to 14

Alloy Composition

Aluminum (Al), % 8.5 to 10.5
0
Carbon (C), % 0
0.13 to 0.18
Copper (Cu), % 83 to 86.5
0
Iron (Fe), % 1.5 to 3.5
99.13 to 99.57
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 1.0
0.3 to 0.6
Nickel (Ni), % 0 to 1.5
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0