MakeItFrom.com
Menu (ESC)

CC332G Bronze vs. 8021 Aluminum

CC332G bronze belongs to the copper alloys classification, while 8021 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CC332G bronze and the bottom bar is 8021 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
70
Elongation at Break, % 22
2.3
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
26
Tensile Strength: Ultimate (UTS), MPa 620
160
Tensile Strength: Yield (Proof), MPa 250
130

Thermal Properties

Latent Heat of Fusion, J/g 230
400
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 1060
650
Melting Onset (Solidus), °C 1010
640
Specific Heat Capacity, J/kg-K 440
900
Thermal Conductivity, W/m-K 45
220
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
56
Electrical Conductivity: Equal Weight (Specific), % IACS 12
180

Otherwise Unclassified Properties

Base Metal Price, % relative 29
9.0
Density, g/cm3 8.3
2.8
Embodied Carbon, kg CO2/kg material 3.4
8.1
Embodied Energy, MJ/kg 55
150
Embodied Water, L/kg 390
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
3.4
Resilience: Unit (Modulus of Resilience), kJ/m3 270
130
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 20
49
Strength to Weight: Axial, points 21
16
Strength to Weight: Bending, points 19
23
Thermal Diffusivity, mm2/s 12
88
Thermal Shock Resistance, points 21
7.0

Alloy Composition

Aluminum (Al), % 8.5 to 10.5
98 to 98.8
Copper (Cu), % 80 to 86
0 to 0.050
Iron (Fe), % 1.0 to 3.0
1.2 to 1.7
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 1.5 to 4.0
0
Silicon (Si), % 0 to 0.2
0 to 0.15
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.15