MakeItFrom.com
Menu (ESC)

CC332G Bronze vs. AWS ENiCrFe-2

CC332G bronze belongs to the copper alloys classification, while AWS ENiCrFe-2 belongs to the nickel alloys. There are 20 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is CC332G bronze and the bottom bar is AWS ENiCrFe-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 22
28
Poisson's Ratio 0.34
0.3
Shear Modulus, GPa 43
74
Tensile Strength: Ultimate (UTS), MPa 620
790

Thermal Properties

Latent Heat of Fusion, J/g 230
310
Melting Completion (Liquidus), °C 1060
1390
Melting Onset (Solidus), °C 1010
1350
Specific Heat Capacity, J/kg-K 440
450
Thermal Expansion, µm/m-K 18
12

Otherwise Unclassified Properties

Base Metal Price, % relative 29
65
Density, g/cm3 8.3
8.5
Embodied Carbon, kg CO2/kg material 3.4
11
Embodied Energy, MJ/kg 55
160
Embodied Water, L/kg 390
260

Common Calculations

Stiffness to Weight: Axial, points 7.7
13
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 21
26
Strength to Weight: Bending, points 19
22
Thermal Shock Resistance, points 21
24

Alloy Composition

Aluminum (Al), % 8.5 to 10.5
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
13 to 17
Cobalt (Co), % 0
0 to 0.12
Copper (Cu), % 80 to 86
0 to 0.5
Iron (Fe), % 1.0 to 3.0
0 to 12
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 2.0
1.0 to 3.5
Molybdenum (Mo), % 0
0.5 to 2.5
Nickel (Ni), % 1.5 to 4.0
62 to 85
Niobium (Nb), % 0
0.5 to 4.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0 to 0.75
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.5