MakeItFrom.com
Menu (ESC)

CC332G Bronze vs. C19700 Copper

Both CC332G bronze and C19700 copper are copper alloys. They have 84% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC332G bronze and the bottom bar is C19700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 22
2.4 to 13
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
43
Tensile Strength: Ultimate (UTS), MPa 620
400 to 530
Tensile Strength: Yield (Proof), MPa 250
330 to 520

Thermal Properties

Latent Heat of Fusion, J/g 230
210
Maximum Temperature: Mechanical, °C 220
200
Melting Completion (Liquidus), °C 1060
1090
Melting Onset (Solidus), °C 1010
1040
Specific Heat Capacity, J/kg-K 440
390
Thermal Conductivity, W/m-K 45
250
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
86 to 88
Electrical Conductivity: Equal Weight (Specific), % IACS 12
87 to 89

Otherwise Unclassified Properties

Base Metal Price, % relative 29
30
Density, g/cm3 8.3
8.9
Embodied Carbon, kg CO2/kg material 3.4
2.6
Embodied Energy, MJ/kg 55
41
Embodied Water, L/kg 390
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
12 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 270
460 to 1160
Stiffness to Weight: Axial, points 7.7
7.2
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 21
12 to 16
Strength to Weight: Bending, points 19
14 to 16
Thermal Diffusivity, mm2/s 12
73
Thermal Shock Resistance, points 21
14 to 19

Alloy Composition

Aluminum (Al), % 8.5 to 10.5
0
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 80 to 86
97.4 to 99.59
Iron (Fe), % 1.0 to 3.0
0.3 to 1.2
Lead (Pb), % 0 to 0.1
0 to 0.050
Magnesium (Mg), % 0 to 0.050
0.010 to 0.2
Manganese (Mn), % 0 to 2.0
0 to 0.050
Nickel (Ni), % 1.5 to 4.0
0 to 0.050
Phosphorus (P), % 0
0.1 to 0.4
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0 to 0.2
0 to 0.2
Zinc (Zn), % 0 to 0.5
0 to 0.2
Residuals, % 0
0 to 0.2