MakeItFrom.com
Menu (ESC)

CC332G Bronze vs. C55283 Copper

Both CC332G bronze and C55283 copper are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 83% of their average alloy composition in common. There are 18 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is CC332G bronze and the bottom bar is C55283 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
39
Tensile Strength: Ultimate (UTS), MPa 620
190

Thermal Properties

Latent Heat of Fusion, J/g 230
190
Maximum Temperature: Mechanical, °C 220
200
Melting Completion (Liquidus), °C 1060
720
Melting Onset (Solidus), °C 1010
640
Specific Heat Capacity, J/kg-K 440
400
Thermal Expansion, µm/m-K 18
16

Otherwise Unclassified Properties

Density, g/cm3 8.3
8.6
Embodied Carbon, kg CO2/kg material 3.4
7.9
Embodied Energy, MJ/kg 55
120

Common Calculations

Stiffness to Weight: Axial, points 7.7
6.8
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 21
6.1
Strength to Weight: Bending, points 19
8.5
Thermal Shock Resistance, points 21
8.0

Alloy Composition

Aluminum (Al), % 8.5 to 10.5
0
Copper (Cu), % 80 to 86
86.2 to 87.2
Iron (Fe), % 1.0 to 3.0
0
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 1.5 to 4.0
0
Phosphorus (P), % 0
7.0 to 7.5
Silicon (Si), % 0 to 0.2
0
Silver (Ag), % 0
5.8 to 6.2
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.15