MakeItFrom.com
Menu (ESC)

CC333G Bronze vs. Grade C-6 Titanium

CC333G bronze belongs to the copper alloys classification, while grade C-6 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC333G bronze and the bottom bar is grade C-6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
290
Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 13
9.0
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 45
39
Tensile Strength: Ultimate (UTS), MPa 710
890
Tensile Strength: Yield (Proof), MPa 310
830

Thermal Properties

Latent Heat of Fusion, J/g 230
410
Maximum Temperature: Mechanical, °C 230
310
Melting Completion (Liquidus), °C 1080
1580
Melting Onset (Solidus), °C 1020
1530
Specific Heat Capacity, J/kg-K 440
550
Thermal Conductivity, W/m-K 38
7.8
Thermal Expansion, µm/m-K 18
9.8

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
36
Density, g/cm3 8.3
4.5
Embodied Carbon, kg CO2/kg material 3.5
30
Embodied Energy, MJ/kg 56
480
Embodied Water, L/kg 380
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 75
78
Resilience: Unit (Modulus of Resilience), kJ/m3 410
3300
Stiffness to Weight: Axial, points 8.0
13
Stiffness to Weight: Bending, points 20
35
Strength to Weight: Axial, points 24
55
Strength to Weight: Bending, points 21
46
Thermal Diffusivity, mm2/s 10
3.2
Thermal Shock Resistance, points 24
63

Alloy Composition

Aluminum (Al), % 8.5 to 10.5
4.0 to 6.0
Bismuth (Bi), % 0 to 0.010
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.050
0
Copper (Cu), % 76 to 83
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 3.0 to 5.5
0 to 0.5
Lead (Pb), % 0 to 0.030
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 3.0
0
Nickel (Ni), % 3.7 to 6.0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.1
0
Tin (Sn), % 0 to 0.1
2.0 to 3.0
Titanium (Ti), % 0
89.7 to 94
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.4