MakeItFrom.com
Menu (ESC)

CC333G Bronze vs. C34500 Brass

Both CC333G bronze and C34500 brass are copper alloys. They have 64% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC333G bronze and the bottom bar is C34500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 13
12 to 28
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 45
40
Tensile Strength: Ultimate (UTS), MPa 710
340 to 430
Tensile Strength: Yield (Proof), MPa 310
120 to 180

Thermal Properties

Latent Heat of Fusion, J/g 230
170
Maximum Temperature: Mechanical, °C 230
120
Melting Completion (Liquidus), °C 1080
910
Melting Onset (Solidus), °C 1020
890
Specific Heat Capacity, J/kg-K 440
380
Thermal Conductivity, W/m-K 38
120
Thermal Expansion, µm/m-K 18
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
26
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
29

Otherwise Unclassified Properties

Base Metal Price, % relative 29
24
Density, g/cm3 8.3
8.2
Embodied Carbon, kg CO2/kg material 3.5
2.6
Embodied Energy, MJ/kg 56
45
Embodied Water, L/kg 380
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 75
42 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 410
69 to 160
Stiffness to Weight: Axial, points 8.0
7.1
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 24
12 to 15
Strength to Weight: Bending, points 21
13 to 16
Thermal Diffusivity, mm2/s 10
37
Thermal Shock Resistance, points 24
11 to 14

Alloy Composition

Aluminum (Al), % 8.5 to 10.5
0
Bismuth (Bi), % 0 to 0.010
0
Chromium (Cr), % 0 to 0.050
0
Copper (Cu), % 76 to 83
62 to 65
Iron (Fe), % 3.0 to 5.5
0 to 0.15
Lead (Pb), % 0 to 0.030
1.5 to 2.5
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 3.0
0
Nickel (Ni), % 3.7 to 6.0
0
Silicon (Si), % 0 to 0.1
0
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.5
32 to 36.5
Residuals, % 0
0 to 0.4