MakeItFrom.com
Menu (ESC)

CC333G Bronze vs. C66200 Brass

Both CC333G bronze and C66200 brass are copper alloys. They have 80% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC333G bronze and the bottom bar is C66200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 13
8.0 to 15
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 45
42
Tensile Strength: Ultimate (UTS), MPa 710
450 to 520
Tensile Strength: Yield (Proof), MPa 310
410 to 480

Thermal Properties

Latent Heat of Fusion, J/g 230
200
Maximum Temperature: Mechanical, °C 230
180
Melting Completion (Liquidus), °C 1080
1070
Melting Onset (Solidus), °C 1020
1030
Specific Heat Capacity, J/kg-K 440
390
Thermal Conductivity, W/m-K 38
150
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
35
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
36

Otherwise Unclassified Properties

Base Metal Price, % relative 29
29
Density, g/cm3 8.3
8.7
Embodied Carbon, kg CO2/kg material 3.5
2.7
Embodied Energy, MJ/kg 56
43
Embodied Water, L/kg 380
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 75
40 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 410
760 to 1030
Stiffness to Weight: Axial, points 8.0
7.2
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 24
14 to 17
Strength to Weight: Bending, points 21
15 to 16
Thermal Diffusivity, mm2/s 10
45
Thermal Shock Resistance, points 24
16 to 18

Alloy Composition

Aluminum (Al), % 8.5 to 10.5
0
Bismuth (Bi), % 0 to 0.010
0
Chromium (Cr), % 0 to 0.050
0
Copper (Cu), % 76 to 83
86.6 to 91
Iron (Fe), % 3.0 to 5.5
0 to 0.050
Lead (Pb), % 0 to 0.030
0 to 0.050
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 3.0
0
Nickel (Ni), % 3.7 to 6.0
0.3 to 1.0
Phosphorus (P), % 0
0.050 to 0.2
Silicon (Si), % 0 to 0.1
0
Tin (Sn), % 0 to 0.1
0.2 to 0.7
Zinc (Zn), % 0 to 0.5
6.5 to 12.9
Residuals, % 0
0 to 0.5