MakeItFrom.com
Menu (ESC)

CC333G Bronze vs. C95820 Bronze

Both CC333G bronze and C95820 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. Their average alloy composition is basically identical. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is CC333G bronze and the bottom bar is C95820 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 13
15
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 45
44
Tensile Strength: Ultimate (UTS), MPa 710
730
Tensile Strength: Yield (Proof), MPa 310
310

Thermal Properties

Latent Heat of Fusion, J/g 230
230
Maximum Temperature: Mechanical, °C 230
230
Melting Completion (Liquidus), °C 1080
1080
Melting Onset (Solidus), °C 1020
1020
Specific Heat Capacity, J/kg-K 440
440
Thermal Conductivity, W/m-K 38
38
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 29
29
Density, g/cm3 8.3
8.3
Embodied Carbon, kg CO2/kg material 3.5
3.5
Embodied Energy, MJ/kg 56
56
Embodied Water, L/kg 380
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 75
86
Resilience: Unit (Modulus of Resilience), kJ/m3 410
400
Stiffness to Weight: Axial, points 8.0
8.0
Stiffness to Weight: Bending, points 20
20
Strength to Weight: Axial, points 24
24
Strength to Weight: Bending, points 21
22
Thermal Diffusivity, mm2/s 10
11
Thermal Shock Resistance, points 24
25

Alloy Composition

Aluminum (Al), % 8.5 to 10.5
9.0 to 10
Bismuth (Bi), % 0 to 0.010
0
Chromium (Cr), % 0 to 0.050
0
Copper (Cu), % 76 to 83
77.5 to 82.5
Iron (Fe), % 3.0 to 5.5
4.0 to 5.0
Lead (Pb), % 0 to 0.030
0 to 0.020
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 3.0
0 to 1.5
Nickel (Ni), % 3.7 to 6.0
4.5 to 5.8
Silicon (Si), % 0 to 0.1
0 to 0.1
Tin (Sn), % 0 to 0.1
0 to 0.020
Zinc (Zn), % 0 to 0.5
0 to 0.2
Residuals, % 0
0 to 0.8