MakeItFrom.com
Menu (ESC)

CC334G Bronze vs. Nickel 600

CC334G bronze belongs to the copper alloys classification, while nickel 600 belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC334G bronze and the bottom bar is nickel 600.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 5.6
3.4 to 35
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 45
75
Tensile Strength: Ultimate (UTS), MPa 810
650 to 990
Tensile Strength: Yield (Proof), MPa 410
270 to 760

Thermal Properties

Latent Heat of Fusion, J/g 240
310
Maximum Temperature: Mechanical, °C 240
1100
Melting Completion (Liquidus), °C 1080
1410
Melting Onset (Solidus), °C 1020
1350
Specific Heat Capacity, J/kg-K 450
460
Thermal Conductivity, W/m-K 41
14
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 29
55
Density, g/cm3 8.2
8.5
Embodied Carbon, kg CO2/kg material 3.6
9.0
Embodied Energy, MJ/kg 59
130
Embodied Water, L/kg 390
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
31 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 710
190 to 1490
Stiffness to Weight: Axial, points 8.1
13
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 28
21 to 32
Strength to Weight: Bending, points 24
20 to 26
Thermal Diffusivity, mm2/s 11
3.6
Thermal Shock Resistance, points 28
19 to 29

Alloy Composition

Aluminum (Al), % 10 to 12
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
14 to 17
Copper (Cu), % 72 to 84.5
0 to 0.5
Iron (Fe), % 3.0 to 7.0
6.0 to 10
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 2.5
0 to 1.0
Nickel (Ni), % 4.0 to 7.5
72 to 80
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0