MakeItFrom.com
Menu (ESC)

CC334G Bronze vs. SAE-AISI 1018 Steel

CC334G bronze belongs to the copper alloys classification, while SAE-AISI 1018 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC334G bronze and the bottom bar is SAE-AISI 1018 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
130 to 140
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 5.6
17 to 27
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 45
73
Tensile Strength: Ultimate (UTS), MPa 810
430 to 480
Tensile Strength: Yield (Proof), MPa 410
240 to 400

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 240
400
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1020
1420
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 41
52
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 29
1.8
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 3.6
1.4
Embodied Energy, MJ/kg 59
18
Embodied Water, L/kg 390
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
75 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 710
150 to 430
Stiffness to Weight: Axial, points 8.1
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 28
15 to 17
Strength to Weight: Bending, points 24
16 to 17
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 28
14 to 15

Alloy Composition

Aluminum (Al), % 10 to 12
0
Carbon (C), % 0
0.15 to 0.2
Copper (Cu), % 72 to 84.5
0
Iron (Fe), % 3.0 to 7.0
98.8 to 99.25
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 2.5
0.6 to 0.9
Nickel (Ni), % 4.0 to 7.5
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0