MakeItFrom.com
Menu (ESC)

CC380H Copper-nickel vs. ACI-ASTM CF3 Steel

CC380H copper-nickel belongs to the copper alloys classification, while ACI-ASTM CF3 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC380H copper-nickel and the bottom bar is ACI-ASTM CF3 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
140
Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 26
60
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 47
77
Tensile Strength: Ultimate (UTS), MPa 310
510
Tensile Strength: Yield (Proof), MPa 120
250

Thermal Properties

Latent Heat of Fusion, J/g 220
300
Maximum Temperature: Mechanical, °C 220
960
Melting Completion (Liquidus), °C 1130
1420
Melting Onset (Solidus), °C 1080
1450
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 46
16
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 36
16
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.8
3.2
Embodied Energy, MJ/kg 58
45
Embodied Water, L/kg 300
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
250
Resilience: Unit (Modulus of Resilience), kJ/m3 59
160
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 9.8
18
Strength to Weight: Bending, points 12
18
Thermal Diffusivity, mm2/s 13
4.3
Thermal Shock Resistance, points 11
11

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17 to 21
Copper (Cu), % 84.5 to 89
0
Iron (Fe), % 1.0 to 1.8
62.9 to 75
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 1.0 to 1.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 9.0 to 11
8.0 to 12
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 0 to 0.5
0