MakeItFrom.com
Menu (ESC)

CC380H Copper-nickel vs. AISI 301L Stainless Steel

CC380H copper-nickel belongs to the copper alloys classification, while AISI 301L stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC380H copper-nickel and the bottom bar is AISI 301L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
210 to 320
Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 26
22 to 50
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 47
77
Tensile Strength: Ultimate (UTS), MPa 310
620 to 1040
Tensile Strength: Yield (Proof), MPa 120
250 to 790

Thermal Properties

Latent Heat of Fusion, J/g 220
280
Maximum Temperature: Mechanical, °C 220
890
Melting Completion (Liquidus), °C 1130
1430
Melting Onset (Solidus), °C 1080
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 46
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 36
13
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.8
2.7
Embodied Energy, MJ/kg 58
39
Embodied Water, L/kg 300
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
210 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 59
160 to 1580
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 9.8
22 to 37
Strength to Weight: Bending, points 12
21 to 29
Thermal Diffusivity, mm2/s 13
4.1
Thermal Shock Resistance, points 11
14 to 24

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 84.5 to 89
0
Iron (Fe), % 1.0 to 1.8
70.7 to 78
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 1.0 to 1.5
0 to 2.0
Nickel (Ni), % 9.0 to 11
6.0 to 8.0
Niobium (Nb), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.5
0