MakeItFrom.com
Menu (ESC)

CC380H Copper-nickel vs. EN 1.5503 Steel

CC380H copper-nickel belongs to the copper alloys classification, while EN 1.5503 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC380H copper-nickel and the bottom bar is EN 1.5503 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
120 to 160
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 26
12 to 17
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 47
73
Tensile Strength: Ultimate (UTS), MPa 310
400 to 520
Tensile Strength: Yield (Proof), MPa 120
270 to 430

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 220
400
Melting Completion (Liquidus), °C 1130
1460
Melting Onset (Solidus), °C 1080
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 46
52
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.8
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.8
1.4
Embodied Energy, MJ/kg 58
18
Embodied Water, L/kg 300
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
41 to 81
Resilience: Unit (Modulus of Resilience), kJ/m3 59
200 to 490
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 9.8
14 to 19
Strength to Weight: Bending, points 12
15 to 18
Thermal Diffusivity, mm2/s 13
14
Thermal Shock Resistance, points 11
12 to 15

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.16 to 0.2
Copper (Cu), % 84.5 to 89
0 to 0.25
Iron (Fe), % 1.0 to 1.8
98.4 to 99.239
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 1.0 to 1.5
0.6 to 0.8
Nickel (Ni), % 9.0 to 11
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 0 to 0.5
0