MakeItFrom.com
Menu (ESC)

CC380H Copper-nickel vs. SAE-AISI 1108 Steel

CC380H copper-nickel belongs to the copper alloys classification, while SAE-AISI 1108 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC380H copper-nickel and the bottom bar is SAE-AISI 1108 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
110 to 140
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 26
23 to 34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 47
73
Tensile Strength: Ultimate (UTS), MPa 310
380 to 440
Tensile Strength: Yield (Proof), MPa 120
220 to 360

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 220
400
Melting Completion (Liquidus), °C 1130
1460
Melting Onset (Solidus), °C 1080
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 46
52
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.8
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 3.8
1.4
Embodied Energy, MJ/kg 58
18
Embodied Water, L/kg 300
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
95 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 59
130 to 340
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 9.8
13 to 16
Strength to Weight: Bending, points 12
15 to 16
Thermal Diffusivity, mm2/s 13
14
Thermal Shock Resistance, points 11
12 to 14

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0
0.080 to 0.13
Copper (Cu), % 84.5 to 89
0
Iron (Fe), % 1.0 to 1.8
98.9 to 99.24
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 1.0 to 1.5
0.6 to 0.8
Nickel (Ni), % 9.0 to 11
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0
0.080 to 0.13
Zinc (Zn), % 0 to 0.5
0